

Welcome to TensorNN’s documentation!

A python machine learning library made from scratch.

	tensornn

	

tensornn

	tensornn.activation

	This file contains the activation functions of TensorNN.

	tensornn.errors

	This file contains errors the TensorNN might raise.

	tensornn.layers

	This file contains different types of layers used in neural networks.

	tensornn.loss

	This file contains the loss functions used in TensorNN.

	tensornn.nn

	This file contains the neural network class.

	tensornn.optimizers

	This file contains optimizers that help tune your neural network.

	tensornn.tensor

	This file contains the Tensor class for TensorNN.

	tensornn.utils

	This file contains useful variables that are used in TensorNN.

tensornn.activation

This file contains the activation functions of TensorNN. Activation
functions modify their input to create non-linearity in the network.
This allows your network to handle more complex problems. They are
very similar to a layer.

Classes

	Activation

	Base activation class.

	ELU

	Exponential linear unit is similar to ReLU, but it is not piecewise.

	LeakyReLU

	Leaky ReLU is extremely similar to ReLU.

	NewtonsSerpentine

	Haven't seen it anywhere so I am not sure if this is good but seemed like a good candidate.

	NoActivation

	Linear activation function, doesn't change anything.

	ReLU

	The rectified linear unit activation function is one of the simplest activation function.

	Sigmoid

	The sigmoid function's output is always between -1 and 1 Formula: 1 / (1+e^(-x)) | constants: e(Euler's number, 2.718...)

	Softmax

	The softmax activation function is most commonly used in the output layer.

	Swish

	The swish activation function is the output of the sigmoid function multiplied by x.

	Tanh

	TODO: add description

tensornn.activation.Activation

	
class tensornn.activation.Activation

	Bases: ABC

Base activation class. All activation classes should inherit from this.

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
abstract derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
abstract forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.ELU

	
class tensornn.activation.ELU(a: float = 1)

	Bases: Activation

Exponential linear unit is similar to ReLU, but it is not piecewise.
Formula: A*((e^x)-1) | constants: A, e(Euler’s number, 2.718…)

Ex, A=1: [12.319, -91.3, 0.132] -> [12.319, -1, 0.132]

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__init__(a: float = 1) → None

	Initialize ELU.

	Parameters:

	a – multiplier used in formula, checkout help(tnn.activation.ELU), defaults to 1

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.LeakyReLU

	
class tensornn.activation.LeakyReLU(a: float = 0.1)

	Bases: Activation

Leaky ReLU is extremely similar to ReLU. ReLU is LeakyReLU if A was 1.
Formula: if x>=0, x; if x<0, Ax | constants: A(leak)

Ex, A=0.1: [12.319, -91.3, 0.132] -> [12.319, -9.13, 0.132]

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__init__(a: float = 0.1) → None

	Initialize LeakyReLU.

	Parameters:

	a – multiplier used in formula, checkout help(tnn.activation.LeakyReLU), defaults to 1

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.NewtonsSerpentine

	
class tensornn.activation.NewtonsSerpentine(a: float = 1, b: float = 1)

	Bases: Activation

Haven’t seen it anywhere so I am not sure if this is good but seemed like a good candidate.
NOTE: THIS IS NOT A GOOD CANDIDATE. Larger numbers result in a lower value, which means being
large doesn’t give importance. Do not use unless you want to have some fun ;)

Formula: (A*B*x)/(x^2+A^2) | A, B constants

Ex, A=1,B=1: [12.319, -91.3, 0.132] -> [0.08064402, -0.01095159, 0.12973942]

https://mathworld.wolfram.com/SerpentineCurve.html

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__init__(a: float = 1, b: float = 1) → None

	Initialize Newton’s Serpentine. Checkout the formula by using:
help(tensornn.activation.NewtonsSerpentine)

	Parameters:

	
	a – constant in equation, defaults to 1

	b – constant in equation, defaults to 1

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.NoActivation

	
class tensornn.activation.NoActivation

	Bases: Activation

Linear activation function, doesn’t change anything. Use this if you don’t want an activation.

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.ReLU

	
class tensornn.activation.ReLU

	Bases: Activation

The rectified linear unit activation function is one of the simplest activation function. It is
a piecewise function.
Formula: if x>=0, x; if x<0, 0

Ex: [12.319, -91.3, 0.132] -> [12.319, 0, 0.132]

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.Sigmoid

	
class tensornn.activation.Sigmoid

	Bases: Activation

The sigmoid function’s output is always between -1 and 1
Formula: 1 / (1+e^(-x)) | constants: e(Euler’s number, 2.718…)

Ex: [12.319, -91.3, 0.132] -> [9.99995534e-01, 2.23312895e-40, 5.32952167e-01]

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.Softmax

	
class tensornn.activation.Softmax

	Bases: Activation

The softmax activation function is most commonly used in the output layer. If you are using this activation
function, you should be using tnn.CategoricalCrossEntropy as your loss function. This is because the softmax
function always generates a probability distribution with all values between 0 and 1, and for these types
of values, tnn.CategoricalCrossEntropy is the best loss function to use.

The goal of softmax is to convert the predicted values of the network into percentages that add up to 1.
Ex. it converts [-1.42, 3.312, 0.192] to [0.00835, 0.94970, 0.41935] which is much easier to understand.

When coming up with a way to write this, a big problem is negative numbers since we can’t have negative
numbers in our final output. So how do we get rid of them? Do we clip them to 0? Do we square them? Do
we use absolute value? Though all these methods seem nice, they take away from the value of negative
numbers. If we clip to 0 then negative numbers are no more than just 0, and squaring or using absolute
value will just result in the opposite of what we want (large negative number turns into large positive
number). So the most effective way is to use exponentiation. Through exponentiation, negative numbers
will be small while positive numbers will be large.

But exponentiation raises a new problem, super large numbers which can cause overflow. Fortunately there
is a simple solution, we can convert all the values into non positive values prior to exponentiation. We
can do this by subtracting each value by the maximum value of our output. This way our values before
exponentiation will range between -inf to 0 and our values after exponentiation will range between 0
(e^-inf) to 1 (e^0).

Finally, to come up with all the percentages we can just figure out how much each value contributes to the
final sum, what fraction of the sum does each value make. So we can do each value divided by the total sum.

All steps/TLDR:
Starting values (from previous example): [-1.42, 3.312, 0.192]
Subtract largest value to make all negative: 3.312 is max so subtract from all values, [-4.732, 0, -3.120]
Exponentiation, raise each value to e (e^x): [0.0080884, 1, 0.04415717]
Come up with percentages, divide each number by the sum: sum is 1.05224557 so we divide each value by it,
[0.00836574, 0.94969828, 0.04193599]

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.Swish

	
class tensornn.activation.Swish

	Bases: Activation

The swish activation function is the output of the sigmoid function multiplied by x.
Formula: x / (1+e^(-x)) | constants: e(Euler’s number, 2.718…)

Ex: [12.319, -91.3, 0.132] -> [1.23189450e+01, -2.03884673e-38, 7.03496861e-02]

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.activation.Tanh

	
class tensornn.activation.Tanh

	Bases: Activation

TODO: add description

Methods

	derivative

	The derivative of the function.

	forward

	Calculate a forwards pass of this activation function.

	
__repr__() → str

	Return repr(self).

	
derivative(inputs: Tensor) → Tensor

	The derivative of the function. Used for backpropagation.

	Parameters:

	inputs – get the derivative of the function at this input

	Returns:

	the derivative of the function at the given input

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this activation function.

	Parameters:

	inputs – the outputs from the previous layer

	Returns:

	the inputs after they are passed through the activation function

tensornn.errors

This file contains errors the TensorNN might raise.

Exceptions

	InitializationError

	Raised when there is a problem with initialization, ex: too few layers

	InputDimError

	Raised when number of dimensions of inputs is not correct.

	NotRegisteredError

	Raised when you try to train your NeuralNetwork before registering it.

tensornn.errors.InitializationError

	
exception tensornn.errors.InitializationError

	Raised when there is a problem with initialization, ex: too few layers

tensornn.errors.InputDimError

	
exception tensornn.errors.InputDimError

	Raised when number of dimensions of inputs is not correct.

tensornn.errors.NotRegisteredError

	
exception tensornn.errors.NotRegisteredError

	Raised when you try to train your NeuralNetwork before registering it.

tensornn.layers

This file contains different types of layers used in neural networks.
Layers need to be able to propagate their inputs forward.

Functions

	flatten

	Flatten the inputs array.

Classes

	Dense

	Each neuron is connected to all neurons in the previous layer.

	Layer

	Abstract base layer class.

tensornn.layers.flatten

	
tensornn.layers.flatten(inputs: Tensor) → Tensor

	Flatten the inputs array. For example, a neural network cannot take in an image
as input since it is 2D, so we can flatten it to make it 1D. This should be the
first layer of the network.

tensornn.layers.Dense

	
class tensornn.layers.Dense(num_neurons: int, num_inputs: Optional[int] = None, activation: Activation = TensorNN.NoActivation, zero_biases: bool = True)

	Bases: Layer

Each neuron is connected to all neurons in the previous layer. Output is
calculated by: (output of previous layer * weights) + biases.

Methods

	backward

	

	forward

	Calculate a forwards pass of this layer, before and after activation.

	register

	Number of inputs in the previous layer.

Attributes

	
__init__(num_neurons: int, num_inputs: Optional[int] = None, activation: Activation = TensorNN.NoActivation, zero_biases: bool = True) → None

	Initialize dense layer.

	Parameters:

	
	num_neurons – the number of neurons in this layer/number of outputs of this layer

	num_inputs – if this is the first layer, then num_inputs must be filled out

	activation – the activation function applied before the layer output is calculated

	zero_biases – whether or not the biases should be initialized to 0, if your network dies try setting this to False

#TODO have stuff like zero_biases go in a dictionary like config or options

	
__repr__() → str

	Return repr(self).

	
forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this layer, before and after activation.

	Parameters:

	inputs – outputs from the previous layer

	Returns:

	the output calculated after this layer before and after activation

	
register(prev: int) → None

	Number of inputs in the previous layer. This is called whenever the NeuralNetwork is
registered(NeuralNetwork.register()) with the optimizer and loss, it calls this method
for all layers giving information to it. If your layer doesn’t need this, you don’t need
to implement this.

	Parameters:

	prev – number of neurons in previous layer

	Returns:

	Nothing

tensornn.layers.Layer

	
class tensornn.layers.Layer(num_neurons: int, num_inputs: Optional[int] = None, activation: Activation = TensorNN.NoActivation)

	Bases: ABC

Abstract base layer class. All layer classes should inherit from this.

A neural network is composed of layers. A set of inputs are moved from one layer to another.
Each layer has its own way of calculating the output of its own inputs(outputs of previous layer).
Some layers also have a few tweakable parameters, tweaking these parameters will allow the network
to learn and adapt to the inputs to produce the correct outputs.

Methods

	forward

	Calculate a forwards pass of this layer, before and after activation.

	register

	Number of inputs in the previous layer.

Attributes

	neurons

	

	
__init__(num_neurons: int, num_inputs: Optional[int] = None, activation: Activation = TensorNN.NoActivation) → None

	Initialize a TensorNN Layer

	Parameters:

	
	num_neurons – the number of neurons in this layer/number of outputs of this layer

	num_inputs – if this is the first layer, then num_inputs must be filled out

	activation – the activation function applied before the layer output is calculated, defaults to NoActivation

	
abstract forward(inputs: Tensor) → Tensor

	Calculate a forwards pass of this layer, before and after activation.

	Parameters:

	inputs – outputs from the previous layer

	Returns:

	the output calculated after this layer before and after activation

	
register(prev: int) → None

	Number of inputs in the previous layer. This is called whenever the NeuralNetwork is
registered(NeuralNetwork.register()) with the optimizer and loss, it calls this method
for all layers giving information to it. If your layer doesn’t need this, you don’t need
to implement this.

	Parameters:

	prev – number of neurons in previous layer

	Returns:

	Nothing

tensornn.loss

This file contains the loss functions used in TensorNN. Loss functions are
ways your neural network calculates how off its calculations are. Then this
information is used to improve/train it.

Classes

	BinaryCrossEntropy

	Sigmoid is the only activation function compatible with BinaryCrossEntropy loss.

	CategoricalCrossEntropy

	It is recommended to use the Softmax activation function with this loss.

	Loss

	Base loss class.

	MAE

	Mean absolute error is MSE but instead of squaring the values, you absolute value them.

	MSE

	Mean squared error is calculated extremely simply.

	MSLE

	Mean squared logarithmic error is MSE but taking the log of our values before subtraction.

	Poisson

	Poisson loss is calculated with this formula: average of (pred-desired*logₑ(pred))

	RMSE

	Root mean squared error is just MSE, but it includes a square root after taking the average.

	RSS

	Residual sum of squares loss is MSE but instead of doing the mean, you do the sum.

	SquaredHinge

	Square hinge loss is calculated with this formula: max(0, 1-pred*desired)^2

tensornn.loss.BinaryCrossEntropy

	
class tensornn.loss.BinaryCrossEntropy

	Bases: Loss

Sigmoid is the only activation function compatible with BinaryCrossEntropy loss.
This is how it is calculated: -(desired*log(pred) + (1-desired)*log(1-pred)).

Note: log in programming is usually logₑ or natural log or ln in math

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.CategoricalCrossEntropy

	
class tensornn.loss.CategoricalCrossEntropy

	Bases: Loss

It is recommended to use the Softmax activation function with this loss.
Despite its long name, the way that categorical cross entropy loss is calculated is simple.

Let’s say our prediction (after softmax) is [0.7, 0.2, 0.1], and the desired values are
[1, 0, 0]. We can simply get the prediction number at the index of the 1 in the desired
values. 1 is at index 0 so we look at index 0 of our prediction which would be 0.7.
Now we just take the negative log of 0.7 and we are done!

Note: log in programming is usually logₑ or natural log or ln in math.

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.Loss

	
class tensornn.loss.Loss

	Bases: ABC

Base loss class. All loss classes should inherit from this.

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
abstract calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.MAE

	
class tensornn.loss.MAE

	Bases: Loss

Mean absolute error is MSE but instead of squaring the values, you absolute value them.

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.MSE

	
class tensornn.loss.MSE

	Bases: Loss

Mean squared error is calculated extremely simply.
1. Find the difference between the prediction vs. the actual results we should have got
2. Square these values, because negatives are the same as positives, only magnitude matters
3. calculate mean

ex: our predictions: [0.1, 0.2, 0.7], desired: [0, 0, 1]
1. pred - actual: [0.1, 0.2, -0.3]`
2. squared: ``[0.01, 0.04, 0.09]
3. mean: 0.04666667

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.MSLE

	
class tensornn.loss.MSLE

	Bases: Loss

Mean squared logarithmic error is MSE but taking the log of our values before subtraction.

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.Poisson

	
class tensornn.loss.Poisson

	Bases: Loss

Poisson loss is calculated with this formula: average of (pred-desired*logₑ(pred))

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.RMSE

	
class tensornn.loss.RMSE

	Bases: Loss

Root mean squared error is just MSE, but it includes a square root after taking the average.

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.RSS

	
class tensornn.loss.RSS

	Bases: Loss

Residual sum of squares loss is MSE but instead of doing the mean, you do the sum.

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.loss.SquaredHinge

	
class tensornn.loss.SquaredHinge

	Bases: Loss

Square hinge loss is calculated with this formula: max(0, 1-pred*desired)^2

Methods

	calculate

	The mean of all the loss values in this batch.

	derivative

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	
calculate(pred: Tensor, desired: Tensor) → Tensor

	The mean of all the loss values in this batch.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the average of calculated loss for one whole pass of the network

	
derivative(pred: Tensor, desired: Tensor) → Tensor

	Used in backpropagation which helps calculates how much each neuron impacts the loss.

	Parameters:

	
	pred – the prediction of the network

	desired – the desired values which the network should have gotten close to

	Returns:

	the derivative of the loss function wrt the last layer of the network

tensornn.nn

This file contains the neural network class.

Classes

	NeuralNetwork

	Create your neural network with this class.

tensornn.nn.NeuralNetwork

	
class tensornn.nn.NeuralNetwork(layers: Iterable[Layer] = ())

	Bases: object

Create your neural network with this class.

Methods

	add

	Add another layer(s) to the network.

	backward

	Find out how much each weight/bias contributes to the loss and gets stored in each layer.

	forward

	Propagate the inputs through the network and return the last layer's output.

	get_loss

	Calculate the loss for the given data.

	predict

	Get the prediction of the neural network.

	register

	Register the neural network.

	simple

	Create a NeuralNetwork from the number of neurons per layer.

	train

	Train the neural network.

	
__init__(layers: Iterable[Layer] = ()) → None

	Initialize the network.

	Parameters:

	layers – list of layers that make up network

	
__repr__()

	Return repr(self).

	
add(layers: Union[Layer, Iterable[Layer]]) → None

	Add another layer(s) to the network. This is the same as initializing
the network with this layer included.

	Parameters:

	layer – the layer to be added

	
backward(loss_deriv: Tensor) → None

	Find out how much each weight/bias contributes to the loss and gets stored in each layer.
Not meant for external use.

	Parameters:

	loss_deriv – the derivative of the loss wrt the output of the last layer

	Returns:

	nothing

	
forward(inputs: Tensor) → Tensor

	Propagate the inputs through the network and return the last layer’s output.
Automatically flattens the input.

	Parameters:

	inputs – inputs to the network

	Returns:

	the output of the last layer in the network

	
get_loss(inputs: Tensor, desired_outputs: Tensor) → Tensor

	Calculate the loss for the given data.

	Parameters:

	
	inputs – input to the network

	desired_outputs – desired output of the network for the given inputs

	Returns:

	the loss of the network for the given parameters

	
predict(inputs: Tensor) → int

	Get the prediction of the neural network. This will return the index of the most highly
activated neuron. This method should only be used on a trained network, because otherwise
it will produce useless random values.

	Parameters:

	inputs – inputs to the network

	Returns:

	an array which contains the value of each neuron in the last layer

	
register(loss: Loss, optimizer: Optimizer) → None

	Register the neural network. This method initializes the network with loss and optimizer
and also finishes up any last touches to its layers.

	Parameters:

	
	loss – type of loss this network uses to calculate loss

	optimizer – type of optimizer this network uses

	Raises:

	InitializationError – num_inputs not specified to first layer

	
classmethod simple(sizes: Sequence[int], learning_rate: float = 0.001)

	Create a NeuralNetwork from the number of neurons per layer.
First layer will be considered the input layer. All layers will be the
Dense layer with the ReLU activation. The last layer will be Dense with
the Softmax activation. The network will also be registered with
CategoricalCrossEntropy loss and the SGD optimizer.

	Parameters:

	sizes – list of numbers of neurons per layer

	
train(inputs: Tensor, desired_outputs: Tensor, learning_rate: Optional[float] = None, batch_size: int = 32, epochs: int = 5, verbose: int = 1) → None

	Train the neural network. What training essentially does is adjust the weights and
biases of the neural network for the inputs to match the desired outputs as close
as possible.

	Parameters:

	
	inputs – training data which is inputted to the network

	desired_outputs – these values is what you want the network to output for respective inputs

	epochs – how many iterations will your network will run to learn

	verbose – the level of verbosity of the program (1-3), defaults to 1

	Raises:

	
	NotRegisteredError – network not registered

	InputDimError – inputs not at least 2d

tensornn.optimizers

This file contains optimizers that help tune your neural network.
Optimizers enable us to improve our neural network efficiently.

Classes

	Optimizer

	

	SGD

	Stochastic gradient descent optimizer.

tensornn.optimizers.Optimizer

	
class tensornn.optimizers.Optimizer

	Bases: ABC

Methods

tensornn.optimizers.SGD

	
class tensornn.optimizers.SGD(learning_rate: float = 0.01)

	Bases: Optimizer

Stochastic gradient descent optimizer. But, this is actually mini-batch stochastic
gradient descent. You can make it standard SGD by setting batch_size to 1 in training.

Methods

	
__init__(learning_rate: float = 0.01) → None

	Initialize the optimizer.

	Parameters:

	learning_rate – the learning rate of the optimizer

tensornn.tensor

This file contains the Tensor class for TensorNN. Essentially, it is
just a class which does matrix operations for N-dimensional arrays.
Currently we extend off of numpy’s ndarray class since it is efficient
and has a bunch of useful operations. If needed, we can add additional
functionality to our extended class such as new methods.

Classes

	Tensor

	The tensor class.

tensornn.tensor.Tensor

	
class tensornn.tensor.Tensor(*args, **kwargs)

	Bases: ndarray

The tensor class. Currently functions like numpy.ndarray but with a custom print.

Methods

	all

	Returns True if all elements evaluate to True.

	any

	Returns True if any of the elements of a evaluate to True.

	argmax

	Return indices of the maximum values along the given axis.

	argmin

	Return indices of the minimum values along the given axis.

	argpartition

	Returns the indices that would partition this array.

	argsort

	Returns the indices that would sort this array.

	astype

	Copy of the array, cast to a specified type.

	byteswap

	Swap the bytes of the array elements

	choose

	Use an index array to construct a new array from a set of choices.

	clip

	Return an array whose values are limited to [min, max].

	compress

	Return selected slices of this array along given axis.

	conj

	Complex-conjugate all elements.

	conjugate

	Return the complex conjugate, element-wise.

	copy

	Return a copy of the array.

	cumprod

	Return the cumulative product of the elements along the given axis.

	cumsum

	Return the cumulative sum of the elements along the given axis.

	diagonal

	Return specified diagonals.

	dot

	Dot product of two arrays.

	dump

	Dump a pickle of the array to the specified file.

	dumps

	Returns the pickle of the array as a string.

	fill

	Fill the array with a scalar value.

	flatten

	Return a copy of the array collapsed into one dimension.

	getfield

	Returns a field of the given array as a certain type.

	item

	Copy an element of an array to a standard Python scalar and return it.

	itemset

	Insert scalar into an array (scalar is cast to array's dtype, if possible)

	max

	Return the maximum along a given axis.

	mean

	Returns the average of the array elements along given axis.

	min

	Return the minimum along a given axis.

	newbyteorder

	Return the array with the same data viewed with a different byte order.

	nonzero

	Return the indices of the elements that are non-zero.

	partition

	Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array.

	prod

	Return the product of the array elements over the given axis

	ptp

	Peak to peak (maximum - minimum) value along a given axis.

	put

	Set a.flat[n] = values[n] for all n in indices.

	ravel

	Return a flattened array.

	repeat

	Repeat elements of an array.

	reshape

	Returns an array containing the same data with a new shape.

	resize

	Change shape and size of array in-place.

	round

	Return a with each element rounded to the given number of decimals.

	searchsorted

	Find indices where elements of v should be inserted in a to maintain order.

	setfield

	Put a value into a specified place in a field defined by a data-type.

	setflags

	Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

	sort

	Sort an array in-place.

	squeeze

	Remove axes of length one from a.

	std

	Returns the standard deviation of the array elements along given axis.

	sum

	Return the sum of the array elements over the given axis.

	swapaxes

	Return a view of the array with axis1 and axis2 interchanged.

	take

	Return an array formed from the elements of a at the given indices.

	tmp_str

	Return str(self).

	tobytes

	Construct Python bytes containing the raw data bytes in the array.

	tofile

	Write array to a file as text or binary (default).

	tolist

	Return the array as an a.ndim-levels deep nested list of Python scalars.

	tostring

	A compatibility alias for tobytes, with exactly the same behavior.

	trace

	Return the sum along diagonals of the array.

	transpose

	Returns a view of the array with axes transposed.

	var

	Returns the variance of the array elements, along given axis.

	view

	New view of array with the same data.

Attributes

	T

	The transposed array.

	base

	Base object if memory is from some other object.

	ctypes

	An object to simplify the interaction of the array with the ctypes module.

	data

	Python buffer object pointing to the start of the array's data.

	dtype

	Data-type of the array's elements.

	flags

	Information about the memory layout of the array.

	flat

	A 1-D iterator over the array.

	imag

	The imaginary part of the array.

	itemsize

	Length of one array element in bytes.

	nbytes

	Total bytes consumed by the elements of the array.

	ndim

	Number of array dimensions.

	real

	The real part of the array.

	shape

	Tuple of array dimensions.

	size

	Number of elements in the array.

	strides

	Tuple of bytes to step in each dimension when traversing an array.

	
T

	The transposed array.

Same as self.transpose().

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

See Also

transpose

	
__abs__()

	abs(self)

	
__add__(value, /)

	Return self+value.

	
__and__(value, /)

	Return self&value.

	
__array__([dtype,]/) → reference if type unchanged, copy otherwise.

	Returns either a new reference to self if dtype is not given or a new array
of provided data type if dtype is different from the current dtype of the
array.

	
__array_finalize__

	None.

	
__array_interface__

	Array protocol: Python side.

	
__array_prepare__(obj) → Object of same type as ndarray object obj.

	

	
__array_priority__

	Array priority.

	
__array_struct__

	Array protocol: C-struct side.

	
__array_wrap__(obj) → Object of same type as ndarray object a.

	

	
__bool__()

	self != 0

	
__contains__(key, /)

	Return key in self.

	
__copy__()

	Used if copy.copy() is called on an array. Returns a copy of the array.

Equivalent to a.copy(order='K').

	
__deepcopy__(memo, /) → Deep copy of array.

	Used if copy.deepcopy() is called on an array.

	
__delitem__(key, /)

	Delete self[key].

	
__divmod__(value, /)

	Return divmod(self, value).

	
__eq__(value, /)

	Return self==value.

	
__float__()

	float(self)

	
__floordiv__(value, /)

	Return self//value.

	
__format__()

	Default object formatter.

	
__ge__(value, /)

	Return self>=value.

	
__getitem__(key, /)

	Return self[key].

	
__gt__(value, /)

	Return self>value.

	
__hash__ = None

	

	
__iadd__(value, /)

	Return self+=value.

	
__iand__(value, /)

	Return self&=value.

	
__ifloordiv__(value, /)

	Return self//=value.

	
__ilshift__(value, /)

	Return self<<=value.

	
__imatmul__(value, /)

	Return self@=value.

	
__imod__(value, /)

	Return self%=value.

	
__imul__(value, /)

	Return self*=value.

	
__index__()

	Return self converted to an integer, if self is suitable for use as an index into a list.

	
__int__()

	int(self)

	
__invert__()

	~self

	
__ior__(value, /)

	Return self|=value.

	
__ipow__(value, /)

	Return self**=value.

	
__irshift__(value, /)

	Return self>>=value.

	
__isub__(value, /)

	Return self-=value.

	
__iter__()

	Implement iter(self).

	
__itruediv__(value, /)

	Return self/=value.

	
__ixor__(value, /)

	Return self^=value.

	
__le__(value, /)

	Return self<=value.

	
__len__()

	Return len(self).

	
__lshift__(value, /)

	Return self<<value.

	
__lt__(value, /)

	Return self<value.

	
__matmul__(value, /)

	Return self@value.

	
__mod__(value, /)

	Return self%value.

	
__mul__(value, /)

	Return self*value.

	
__ne__(value, /)

	Return self!=value.

	
__neg__()

	-self

	
static __new__(cls, *args, **kwargs)

	

	
__or__(value, /)

	Return self|value.

	
__pos__()

	+self

	
__pow__(value, mod=None, /)

	Return pow(self, value, mod).

	
__radd__(value, /)

	Return value+self.

	
__rand__(value, /)

	Return value&self.

	
__rdivmod__(value, /)

	Return divmod(value, self).

	
__reduce__()

	For pickling.

	
__reduce_ex__()

	Helper for pickle.

	
__repr__()

	Return repr(self).

	
__rfloordiv__(value, /)

	Return value//self.

	
__rlshift__(value, /)

	Return value<<self.

	
__rmatmul__(value, /)

	Return value@self.

	
__rmod__(value, /)

	Return value%self.

	
__rmul__(value, /)

	Return value*self.

	
__ror__(value, /)

	Return value|self.

	
__rpow__(value, mod=None, /)

	Return pow(value, self, mod).

	
__rrshift__(value, /)

	Return value>>self.

	
__rshift__(value, /)

	Return self>>value.

	
__rsub__(value, /)

	Return value-self.

	
__rtruediv__(value, /)

	Return value/self.

	
__rxor__(value, /)

	Return value^self.

	
__setitem__(key, value, /)

	Set self[key] to value.

	
__setstate__(state, /)

	For unpickling.

The state argument must be a sequence that contains the following
elements:

Parameters

	versionint
	optional pickle version. If omitted defaults to 0.

shape : tuple
dtype : data-type
isFortran : bool
rawdata : string or list

a binary string with the data (or a list if ‘a’ is an object array)

	
__sizeof__()

	Size of object in memory, in bytes.

	
__str__()

	Return str(self).

	
__sub__(value, /)

	Return self-value.

	
__truediv__(value, /)

	Return self/value.

	
__xor__(value, /)

	Return self^value.

	
all(axis=None, out=None, keepdims=False, *, where=True)

	Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See Also

numpy.all : equivalent function

	
any(axis=None, out=None, keepdims=False, *, where=True)

	Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See Also

numpy.any : equivalent function

	
argmax(axis=None, out=None)

	Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See Also

numpy.argmax : equivalent function

	
argmin(axis=None, out=None)

	Return indices of the minimum values along the given axis.

Refer to numpy.argmin for detailed documentation.

See Also

numpy.argmin : equivalent function

	
argpartition(kth, axis=-1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See Also

numpy.argpartition : equivalent function

	
argsort(axis=-1, kind=None, order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See Also

numpy.argsort : equivalent function

	
astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

Parameters

	dtypestr or dtype
	Typecode or data-type to which the array is cast.

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

	casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
	Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	subokbool, optional
	If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

	copybool, optional
	By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

Returns

	arr_tndarray
	Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input parameter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only
for “unsafe” casting. Casting to multiple fields is allowed, but
casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires
that the string dtype length is long enough to store the max
integer/float value converted.

Raises

	ComplexWarning
	When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

	
base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

	
byteswap(inplace=False)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.
Arrays of byte-strings are not swapped. The real and imaginary
parts of a complex number are swapped individually.

Parameters

	inplacebool, optional
	If True, swap bytes in-place, default is False.

Returns

	outndarray
	The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

	A.newbyteorder().byteswap() produces an array with the same values
	but different representation in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
 0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
 0, 3], dtype=uint8)

	
choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See Also

numpy.choose : equivalent function

	
clip(min=None, max=None, out=None, **kwargs)

	Return an array whose values are limited to [min, max].
One of max or min must be given.

Refer to numpy.clip for full documentation.

See Also

numpy.clip : equivalent function

	
compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See Also

numpy.compress : equivalent function

	
conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See Also

numpy.conjugate : equivalent function

	
conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See Also

numpy.conjugate : equivalent function

	
copy(order='C')

	Return a copy of the array.

Parameters

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and numpy.copy() are very
similar but have different default values for their order=
arguments, and this function always passes sub-classes through.)

See also

numpy.copy : Similar function with different default behavior
numpy.copyto

Notes

This function is the preferred method for creating an array copy. The
function numpy.copy() is similar, but it defaults to using order ‘K’,
and will not pass sub-classes through by default.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

	
ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

Parameters

None

Returns

	cPython object
	Possessing attributes data, shape, strides, etc.

See Also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	
_ctypes.data

	A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_['data'][0].

Note that unlike data_as, a reference will not be kept to the array:
code like ctypes.c_void_p((a + b).ctypes.data) will result in a
pointer to a deallocated array, and should be spelt
(a + b).ctypes.data_as(ctypes.c_void_p)

	
_ctypes.shape

	(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype('p') on this
platform. This base-type could be ctypes.c_int, ctypes.c_long, or
ctypes.c_longlong depending on the platform.
The c_intp type is defined accordingly in numpy.ctypeslib.
The ctypes array contains the shape of the underlying array.

	
_ctypes.strides

	(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	
_ctypes.data_as(obj)

	Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

The returned pointer will keep a reference to the array.

	
_ctypes.shape_as(obj)

	Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	
_ctypes.strides_as(obj)

	Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as_parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array([[0, 1],
 [2, 3]], dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
c_uint(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary

	
cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See Also

numpy.cumprod : equivalent function

	
cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See Also

numpy.cumsum : equivalent function

	
data

	Python buffer object pointing to the start of the array’s data.

	
diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See Also

numpy.diagonal : equivalent function

	
dot(b, out=None)

	Dot product of two arrays.

Refer to numpy.dot for full documentation.

See Also

numpy.dot : equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

	
dtype

	Data-type of the array’s elements.

Parameters

None

Returns

d : numpy dtype object

See Also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

	
dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

Parameters

	filestr or Path
	A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

	
dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

Parameters

None

	
fill(value)

	Fill the array with a scalar value.

Parameters

	valuescalar
	All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

	
flags

	Information about the memory layout of the array.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks
the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
from its base array at creation time, but a view of a writeable
array may be subsequently locked while the base array remains writeable.
(The opposite is not true, in that a view of a locked array may not
be made writeable. However, currently, locking a base object does not
lock any views that already reference it, so under that circumstance it
is possible to alter the contents of a locked array via a previously
created writeable view onto it.) Attempting to change a non-writeable
array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	WRITEBACKIFCOPY (X)
	This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating
to the base array will be updated with the contents of this array.

	UPDATEIFCOPY (U)
	(Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array.
When this array is
deallocated, the base array will be updated with the contents of
this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be
changed by the user, via direct assignment to the attribute or dictionary
entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	WRITEBACKIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

	
flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See Also

flatten : Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

	
flatten(order='C')

	Return a copy of the array collapsed into one dimension.

Parameters

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran-
style) order. ‘A’ means to flatten in column-major
order if a is Fortran contiguous in memory,
row-major order otherwise. ‘K’ means to flatten
a in the order the elements occur in memory.
The default is ‘C’.

Returns

	yndarray
	A copy of the input array, flattened to one dimension.

See Also

ravel : Return a flattened array.
flat : A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

	
getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

Parameters

	dtypestr or dtype
	The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

	offsetint
	Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

	
imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

	
item(*args)

	Copy an element of an array to a standard Python scalar and return it.

Parameters

*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

Returns

	zStandard Python scalar object
	A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
 [1, 3, 6],
 [1, 0, 1]])
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

	
itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

Parameters

	*argsArguments
	If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
 [1, 3, 6],
 [1, 0, 1]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[2, 2, 6],
 [1, 0, 6],
 [1, 0, 9]])

	
itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

	
max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

	Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See Also

numpy.amax : equivalent function

	
mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)

	Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See Also

numpy.mean : equivalent function

	
min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

	Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See Also

numpy.amin : equivalent function

	
nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

	
ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

	
newbyteorder(new_order='S', /)

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

Parameters

	new_orderstring, optional
	Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

	‘S’ - swap dtype from current to opposite endian

	{‘<’, ‘little’} - little endian

	{‘>’, ‘big’} - big endian

	‘=’ - native order, equivalent to sys.byteorder

	{‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order.

Returns

	new_arrarray
	New array object with the dtype reflecting given change to the
byte order.

	
nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See Also

numpy.nonzero : equivalent function

	
partition(kth, axis=-1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that the value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

Parameters

	kthint or sequence of ints
	Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order of all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

	axisint, optional
	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘introselect’}, optional
	Selection algorithm. Default is ‘introselect’.

	orderstr or list of str, optional
	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need to be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See Also

numpy.partition : Return a parititioned copy of an array.
argpartition : Indirect partition.
sort : Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

	
prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

	Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See Also

numpy.prod : equivalent function

	
ptp(axis=None, out=None, keepdims=False)

	Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See Also

numpy.ptp : equivalent function

	
put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See Also

numpy.put : equivalent function

	
ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See Also

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

	
real

	The real part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

See Also

numpy.real : equivalent function

	
repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See Also

numpy.repeat : equivalent function

	
reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See Also

numpy.reshape : equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows
the elements of the shape parameter to be passed in as separate arguments.
For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

	
resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

Parameters

	new_shapetuple of ints, or n ints
	Shape of resized array.

	refcheckbool, optional
	If False, reference count will not be checked. Default is True.

Returns

None

Raises

	ValueError
	If a does not own its own data or references or views to it exist,
and the data memory must be changed.
PyPy only: will always raise if the data memory must be changed, since
there is no reliable way to determine if references or views to it
exist.

	SystemError
	If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See Also

resize : Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

	
round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See Also

numpy.around : equivalent function

	
searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See Also

numpy.searchsorted : equivalent function

	
setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset
bytes into the field.

Parameters

	valobject
	Value to be placed in field.

	dtypedtype object
	Data-type of the field in which to place val.

	offsetint, optional
	The number of bytes into the field at which to place val.

Returns

None

See Also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]], dtype=int32)
>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],
 [1.5e-323, 1.0e+000, 1.5e-323],
 [1.5e-323, 1.5e-323, 1.0e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

	
setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY),
respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set
to True. The flag WRITEABLE can only be set to True if the array owns its
own memory, or the ultimate owner of the memory exposes a writeable buffer
interface, or is a string. (The exception for string is made so that
unpickling can be done without copying memory.)

Parameters

	writebool, optional
	Describes whether or not a can be written to.

	alignbool, optional
	Describes whether or not a is aligned properly for its type.

	uicbool, optional
	Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 7 Boolean flags
in use, only four of which can be changed by the user:
WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
called, the base array will be updated with the contents of this array.

All flags can be accessed using the single (upper case) letter as well
as the full name.

Examples

>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

	
shape

	Tuple of array dimensions.

The shape property is usually used to get the current shape of an array,
but may also be used to reshape the array in-place by assigning a tuple of
array dimensions to it. As with numpy.reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of
the array and the remaining dimensions. Reshaping an array in-place will
fail if a copy is required.

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

See Also

numpy.reshape : similar function
ndarray.reshape : similar method

	
size

	Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Notes

a.size returns a standard arbitrary precision Python integer. This
may not be the case with other methods of obtaining the same value
(like the suggested np.prod(a.shape), which returns an instance
of np.int_), and may be relevant if the value is used further in
calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

	
sort(axis=-1, kind=None, order=None)

	Sort an array in-place. Refer to numpy.sort for full documentation.

Parameters

	axisint, optional
	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional
	Sorting algorithm. The default is ‘quicksort’. Note that both ‘stable’
and ‘mergesort’ use timsort under the covers and, in general, the
actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.

	orderstr or list of str, optional
	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See Also

numpy.sort : Return a sorted copy of an array.
numpy.argsort : Indirect sort.
numpy.lexsort : Indirect stable sort on multiple keys.
numpy.searchsorted : Find elements in sorted array.
numpy.partition: Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],
 dtype=[('x', 'S1'), ('y', '<i8')])

	
squeeze(axis=None)

	Remove axes of length one from a.

Refer to numpy.squeeze for full documentation.

See Also

numpy.squeeze : equivalent function

	
std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

	Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See Also

numpy.std : equivalent function

	
strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

See Also

numpy.lib.stride_tricks.as_strided

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

	
sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)

	Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See Also

numpy.sum : equivalent function

	
swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See Also

numpy.swapaxes : equivalent function

	
take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See Also

numpy.take : equivalent function

	
tmp_str()

	Return str(self).

	
tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object is produced in C-order by default.
This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters

	order{‘C’, ‘F’, ‘A’}, optional
	Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is
Fortran contiguous, ‘C’ otherwise. Default is ‘C’.

Returns

	sbytes
	Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

	
tofile(fid, sep='', format='%s')

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

Parameters

	fidfile or str or Path
	An open file object, or a string containing a filename.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

	sepstr
	Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

	formatstr
	Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

When fid is a file object, array contents are directly written to the
file, bypassing the file object’s write method. As a result, tofile
cannot be used with files objects supporting compression (e.g., GzipFile)
or file-like objects that do not support fileno() (e.g., BytesIO).

	
tolist()

	Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible builtin Python type, via
the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will
not be a list at all, but a simple Python scalar.

Parameters

none

Returns

	yobject, or list of object, or list of list of object, or …
	The possibly nested list of array elements.

Notes

The array may be recreated via a = np.array(a.tolist()), although this
may sometimes lose precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a),
except that tolist changes numpy scalars to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
 ...
TypeError: iteration over a 0-d array
>>> a.tolist()
1

	
tostring(order='C')

	A compatibility alias for tobytes, with exactly the same behavior.

Despite its name, it returns bytes not strs.

Deprecated since version 1.19.0.

	
trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See Also

numpy.trace : equivalent function

	
transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the
same vector. To convert a 1-D array into a 2D column vector, an additional
dimension must be added. np.atleast2d(a).T achieves this, as does
a[:, np.newaxis].
For a 2-D array, this is a standard matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a’s
i-th axis becomes a.transpose()’s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

Returns

	outndarray
	View of a, with axes suitably permuted.

See Also

transpose : Equivalent function
ndarray.T : Array property returning the array transposed.
ndarray.reshape : Give a new shape to an array without changing its data.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

	
var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

	Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See Also

numpy.var : equivalent function

	
view([dtype][, type])

	New view of array with the same data.

Note

Passing None for dtype is different from omitting the parameter,
since the former invokes dtype(None) which is an alias for
dtype('float_').

Parameters

	dtypedata-type or ndarray sub-class, optional
	Data-type descriptor of the returned view, e.g., float32 or int16.
Omitting it results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

	typePython type, optional
	Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 ...
ValueError: To change to a dtype of a different size, the array must be C-contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

tensornn.utils

This file contains useful variables that are used in TensorNN.

Functions

	normalize

	Normalize the training data.

	one_hot

	Get the one-hot representation of an integer.

	source

	Get the source code of a TensorNN object.

	takes_one_hot

	Apply this decorator to a function that takes in a one-hot vector.

	takes_single_value

	Apply this decorator to a function that takes in a single value.

tensornn.utils.normalize

	
tensornn.utils.normalize(data)

	Normalize the training data. This will never hurt your data, it will always help it, make sure
to use this every time. This function will make it so that the largest value
in the data is 1.

	Parameters:

	data – training data to the network

	Returns:

	normalized data, max is 1

tensornn.utils.one_hot

	
tensornn.utils.one_hot(values: Union[int, Iterable[int]], classes: int) → Tensor

	Get the one-hot representation of an integer. One-hot representation is like
the opposite of np.argmax. Let’s we want our network’s output to be
[0, 1](first neuron on, second off), that would be the ‘one-hot vector’.
If you were to run np.argmax([0, 1]), you would get the index of the 1(which is also
the index of the max value).

	Parameters:

	
	values – to be converted to one-hot (max 1D), ex: one_hot(3, 5) -> [0, 0, 0, 1, 0]

	classes – number of different places for the 1, len of one-hot

	Returns:

	one-hot vector from the given params

tensornn.utils.source

	
tensornn.utils.source(obj: ~typing.Any, output: ~typing.Optional[~typing.TextIO] = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>) → str

	Get the source code of a TensorNN object.

	Parameters:

	obj – the tensornn object, ex: tnn.nn.NeuralNetwork

tensornn.utils.takes_one_hot

	
tensornn.utils.takes_one_hot(pos: int = 2)

	Apply this decorator to a function that takes in a one-hot vector. Used for loss functions.

	Parameters:

	pos – position of the argument to convert to one-hot vector, default 2 for loss functions

	Returns:

	decorator

tensornn.utils.takes_single_value

	
tensornn.utils.takes_single_value(pos: int = 1)

	Apply this decorator to a function that takes in a single value. Used for loss functions.

	Parameters:

	pos – position of the argument to convert to single value, default 1 for loss functions

	Returns:

	decorator

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tensornn	

 	
 	
 tensornn.activation	

 	
 	
 tensornn.errors	

 	
 	
 tensornn.layers	

 	
 	
 tensornn.loss	

 	
 	
 tensornn.nn	

 	
 	
 tensornn.optimizers	

 	
 	
 tensornn.tensor	

 	
 	
 tensornn.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

_

 	
 	__abs__() (tensornn.tensor.Tensor method)

 	__add__() (tensornn.tensor.Tensor method)

 	__and__() (tensornn.tensor.Tensor method)

 	__array__() (tensornn.tensor.Tensor method)

 	__array_finalize__ (tensornn.tensor.Tensor attribute)

 	__array_interface__ (tensornn.tensor.Tensor attribute)

 	__array_prepare__() (tensornn.tensor.Tensor method)

 	__array_priority__ (tensornn.tensor.Tensor attribute)

 	__array_struct__ (tensornn.tensor.Tensor attribute)

 	__array_wrap__() (tensornn.tensor.Tensor method)

 	__bool__() (tensornn.tensor.Tensor method)

 	__contains__() (tensornn.tensor.Tensor method)

 	__copy__() (tensornn.tensor.Tensor method)

 	__deepcopy__() (tensornn.tensor.Tensor method)

 	__delitem__() (tensornn.tensor.Tensor method)

 	__divmod__() (tensornn.tensor.Tensor method)

 	__eq__() (tensornn.tensor.Tensor method)

 	__float__() (tensornn.tensor.Tensor method)

 	__floordiv__() (tensornn.tensor.Tensor method)

 	__format__() (tensornn.tensor.Tensor method)

 	__ge__() (tensornn.tensor.Tensor method)

 	__getitem__() (tensornn.tensor.Tensor method)

 	__gt__() (tensornn.tensor.Tensor method)

 	__hash__ (tensornn.tensor.Tensor attribute)

 	__iadd__() (tensornn.tensor.Tensor method)

 	__iand__() (tensornn.tensor.Tensor method)

 	__ifloordiv__() (tensornn.tensor.Tensor method)

 	__ilshift__() (tensornn.tensor.Tensor method)

 	__imatmul__() (tensornn.tensor.Tensor method)

 	__imod__() (tensornn.tensor.Tensor method)

 	__imul__() (tensornn.tensor.Tensor method)

 	__index__() (tensornn.tensor.Tensor method)

 	__init__() (tensornn.activation.ELU method)

 	(tensornn.activation.LeakyReLU method)

 	(tensornn.activation.NewtonsSerpentine method)

 	(tensornn.layers.Dense method)

 	(tensornn.layers.Layer method)

 	(tensornn.nn.NeuralNetwork method)

 	(tensornn.optimizers.SGD method)

 	__int__() (tensornn.tensor.Tensor method)

 	__invert__() (tensornn.tensor.Tensor method)

 	__ior__() (tensornn.tensor.Tensor method)

 	__ipow__() (tensornn.tensor.Tensor method)

 	__irshift__() (tensornn.tensor.Tensor method)

 	__isub__() (tensornn.tensor.Tensor method)

 	__iter__() (tensornn.tensor.Tensor method)

 	__itruediv__() (tensornn.tensor.Tensor method)

 	__ixor__() (tensornn.tensor.Tensor method)

 	
 	__le__() (tensornn.tensor.Tensor method)

 	__len__() (tensornn.tensor.Tensor method)

 	__lshift__() (tensornn.tensor.Tensor method)

 	__lt__() (tensornn.tensor.Tensor method)

 	__matmul__() (tensornn.tensor.Tensor method)

 	__mod__() (tensornn.tensor.Tensor method)

 	__mul__() (tensornn.tensor.Tensor method)

 	__ne__() (tensornn.tensor.Tensor method)

 	__neg__() (tensornn.tensor.Tensor method)

 	__new__() (tensornn.tensor.Tensor static method)

 	__or__() (tensornn.tensor.Tensor method)

 	__pos__() (tensornn.tensor.Tensor method)

 	__pow__() (tensornn.tensor.Tensor method)

 	__radd__() (tensornn.tensor.Tensor method)

 	__rand__() (tensornn.tensor.Tensor method)

 	__rdivmod__() (tensornn.tensor.Tensor method)

 	__reduce__() (tensornn.tensor.Tensor method)

 	__reduce_ex__() (tensornn.tensor.Tensor method)

 	__repr__() (tensornn.activation.ELU method)

 	(tensornn.activation.LeakyReLU method)

 	(tensornn.activation.NewtonsSerpentine method)

 	(tensornn.activation.NoActivation method)

 	(tensornn.activation.ReLU method)

 	(tensornn.activation.Sigmoid method)

 	(tensornn.activation.Softmax method)

 	(tensornn.activation.Swish method)

 	(tensornn.activation.Tanh method)

 	(tensornn.layers.Dense method)

 	(tensornn.nn.NeuralNetwork method)

 	(tensornn.tensor.Tensor method)

 	__rfloordiv__() (tensornn.tensor.Tensor method)

 	__rlshift__() (tensornn.tensor.Tensor method)

 	__rmatmul__() (tensornn.tensor.Tensor method)

 	__rmod__() (tensornn.tensor.Tensor method)

 	__rmul__() (tensornn.tensor.Tensor method)

 	__ror__() (tensornn.tensor.Tensor method)

 	__rpow__() (tensornn.tensor.Tensor method)

 	__rrshift__() (tensornn.tensor.Tensor method)

 	__rshift__() (tensornn.tensor.Tensor method)

 	__rsub__() (tensornn.tensor.Tensor method)

 	__rtruediv__() (tensornn.tensor.Tensor method)

 	__rxor__() (tensornn.tensor.Tensor method)

 	__setitem__() (tensornn.tensor.Tensor method)

 	__setstate__() (tensornn.tensor.Tensor method)

 	__sizeof__() (tensornn.tensor.Tensor method)

 	__str__() (tensornn.tensor.Tensor method)

 	__sub__() (tensornn.tensor.Tensor method)

 	__truediv__() (tensornn.tensor.Tensor method)

 	__xor__() (tensornn.tensor.Tensor method)

A

 	
 	Activation (class in tensornn.activation)

 	add() (tensornn.nn.NeuralNetwork method)

 	all() (tensornn.tensor.Tensor method)

 	any() (tensornn.tensor.Tensor method)

 	
 	argmax() (tensornn.tensor.Tensor method)

 	argmin() (tensornn.tensor.Tensor method)

 	argpartition() (tensornn.tensor.Tensor method)

 	argsort() (tensornn.tensor.Tensor method)

 	astype() (tensornn.tensor.Tensor method)

B

 	
 	backward() (tensornn.nn.NeuralNetwork method)

 	base (tensornn.tensor.Tensor attribute)

 	
 	BinaryCrossEntropy (class in tensornn.loss)

 	byteswap() (tensornn.tensor.Tensor method)

C

 	
 	calculate() (tensornn.loss.BinaryCrossEntropy method)

 	(tensornn.loss.CategoricalCrossEntropy method)

 	(tensornn.loss.Loss method)

 	(tensornn.loss.MAE method)

 	(tensornn.loss.MSE method)

 	(tensornn.loss.MSLE method)

 	(tensornn.loss.Poisson method)

 	(tensornn.loss.RMSE method)

 	(tensornn.loss.RSS method)

 	(tensornn.loss.SquaredHinge method)

 	
 	CategoricalCrossEntropy (class in tensornn.loss)

 	choose() (tensornn.tensor.Tensor method)

 	clip() (tensornn.tensor.Tensor method)

 	compress() (tensornn.tensor.Tensor method)

 	conj() (tensornn.tensor.Tensor method)

 	conjugate() (tensornn.tensor.Tensor method)

 	copy() (tensornn.tensor.Tensor method)

 	ctypes (tensornn.tensor.Tensor attribute)

 	cumprod() (tensornn.tensor.Tensor method)

 	cumsum() (tensornn.tensor.Tensor method)

D

 	
 	data (tensornn.tensor.Tensor attribute)

 	Dense (class in tensornn.layers)

 	derivative() (tensornn.activation.Activation method)

 	(tensornn.activation.ELU method)

 	(tensornn.activation.LeakyReLU method)

 	(tensornn.activation.NewtonsSerpentine method)

 	(tensornn.activation.NoActivation method)

 	(tensornn.activation.ReLU method)

 	(tensornn.activation.Sigmoid method)

 	(tensornn.activation.Softmax method)

 	(tensornn.activation.Swish method)

 	(tensornn.activation.Tanh method)

 	(tensornn.loss.BinaryCrossEntropy method)

 	(tensornn.loss.CategoricalCrossEntropy method)

 	(tensornn.loss.Loss method)

 	(tensornn.loss.MAE method)

 	(tensornn.loss.MSE method)

 	(tensornn.loss.MSLE method)

 	(tensornn.loss.Poisson method)

 	(tensornn.loss.RMSE method)

 	(tensornn.loss.RSS method)

 	(tensornn.loss.SquaredHinge method)

 	
 	diagonal() (tensornn.tensor.Tensor method)

 	dot() (tensornn.tensor.Tensor method)

 	dtype (tensornn.tensor.Tensor attribute)

 	dump() (tensornn.tensor.Tensor method)

 	dumps() (tensornn.tensor.Tensor method)

E

 	
 	ELU (class in tensornn.activation)

F

 	
 	fill() (tensornn.tensor.Tensor method)

 	flags (tensornn.tensor.Tensor attribute)

 	flat (tensornn.tensor.Tensor attribute)

 	flatten() (in module tensornn.layers)

 	(tensornn.tensor.Tensor method)

 	forward() (tensornn.activation.Activation method)

 	(tensornn.activation.ELU method)

 	(tensornn.activation.LeakyReLU method)

 	(tensornn.activation.NewtonsSerpentine method)

 	(tensornn.activation.NoActivation method)

 	(tensornn.activation.ReLU method)

 	(tensornn.activation.Sigmoid method)

 	(tensornn.activation.Softmax method)

 	(tensornn.activation.Swish method)

 	(tensornn.activation.Tanh method)

 	(tensornn.layers.Dense method)

 	(tensornn.layers.Layer method)

 	(tensornn.nn.NeuralNetwork method)

G

 	
 	get_loss() (tensornn.nn.NeuralNetwork method)

 	
 	getfield() (tensornn.tensor.Tensor method)

I

 	
 	imag (tensornn.tensor.Tensor attribute)

 	InitializationError

 	InputDimError

 	
 	item() (tensornn.tensor.Tensor method)

 	itemset() (tensornn.tensor.Tensor method)

 	itemsize (tensornn.tensor.Tensor attribute)

L

 	
 	Layer (class in tensornn.layers)

 	
 	LeakyReLU (class in tensornn.activation)

 	Loss (class in tensornn.loss)

M

 	
 	MAE (class in tensornn.loss)

 	max() (tensornn.tensor.Tensor method)

 	mean() (tensornn.tensor.Tensor method)

 	min() (tensornn.tensor.Tensor method)

 	
 module

 	tensornn

 	tensornn.activation

 	tensornn.errors

 	tensornn.layers

 	tensornn.loss

 	tensornn.nn

 	tensornn.optimizers

 	tensornn.tensor

 	tensornn.utils

 	
 	MSE (class in tensornn.loss)

 	MSLE (class in tensornn.loss)

N

 	
 	nbytes (tensornn.tensor.Tensor attribute)

 	ndim (tensornn.tensor.Tensor attribute)

 	NeuralNetwork (class in tensornn.nn)

 	newbyteorder() (tensornn.tensor.Tensor method)

 	
 	NewtonsSerpentine (class in tensornn.activation)

 	NoActivation (class in tensornn.activation)

 	nonzero() (tensornn.tensor.Tensor method)

 	normalize() (in module tensornn.utils)

 	NotRegisteredError

O

 	
 	one_hot() (in module tensornn.utils)

 	
 	Optimizer (class in tensornn.optimizers)

P

 	
 	partition() (tensornn.tensor.Tensor method)

 	Poisson (class in tensornn.loss)

 	predict() (tensornn.nn.NeuralNetwork method)

 	
 	prod() (tensornn.tensor.Tensor method)

 	ptp() (tensornn.tensor.Tensor method)

 	put() (tensornn.tensor.Tensor method)

R

 	
 	ravel() (tensornn.tensor.Tensor method)

 	real (tensornn.tensor.Tensor attribute)

 	register() (tensornn.layers.Dense method)

 	(tensornn.layers.Layer method)

 	(tensornn.nn.NeuralNetwork method)

 	ReLU (class in tensornn.activation)

 	
 	repeat() (tensornn.tensor.Tensor method)

 	reshape() (tensornn.tensor.Tensor method)

 	resize() (tensornn.tensor.Tensor method)

 	RMSE (class in tensornn.loss)

 	round() (tensornn.tensor.Tensor method)

 	RSS (class in tensornn.loss)

S

 	
 	searchsorted() (tensornn.tensor.Tensor method)

 	setfield() (tensornn.tensor.Tensor method)

 	setflags() (tensornn.tensor.Tensor method)

 	SGD (class in tensornn.optimizers)

 	shape (tensornn.tensor.Tensor attribute)

 	Sigmoid (class in tensornn.activation)

 	simple() (tensornn.nn.NeuralNetwork class method)

 	size (tensornn.tensor.Tensor attribute)

 	Softmax (class in tensornn.activation)

 	
 	sort() (tensornn.tensor.Tensor method)

 	source() (in module tensornn.utils)

 	SquaredHinge (class in tensornn.loss)

 	squeeze() (tensornn.tensor.Tensor method)

 	std() (tensornn.tensor.Tensor method)

 	strides (tensornn.tensor.Tensor attribute)

 	sum() (tensornn.tensor.Tensor method)

 	swapaxes() (tensornn.tensor.Tensor method)

 	Swish (class in tensornn.activation)

T

 	
 	T (tensornn.tensor.Tensor attribute)

 	take() (tensornn.tensor.Tensor method)

 	takes_one_hot() (in module tensornn.utils)

 	takes_single_value() (in module tensornn.utils)

 	Tanh (class in tensornn.activation)

 	Tensor (class in tensornn.tensor)

 	
 tensornn

 	module

 	
 tensornn.activation

 	module

 	
 tensornn.errors

 	module

 	
 tensornn.layers

 	module

 	
 tensornn.loss

 	module

 	
 	
 tensornn.nn

 	module

 	
 tensornn.optimizers

 	module

 	
 tensornn.tensor

 	module

 	
 tensornn.utils

 	module

 	tmp_str() (tensornn.tensor.Tensor method)

 	tobytes() (tensornn.tensor.Tensor method)

 	tofile() (tensornn.tensor.Tensor method)

 	tolist() (tensornn.tensor.Tensor method)

 	tostring() (tensornn.tensor.Tensor method)

 	trace() (tensornn.tensor.Tensor method)

 	train() (tensornn.nn.NeuralNetwork method)

 	transpose() (tensornn.tensor.Tensor method)

V

 	
 	var() (tensornn.tensor.Tensor method)

 	
 	view() (tensornn.tensor.Tensor method)

 _static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to TensorNN’s documentation!

 		
 tensornn

 		
 tensornn.activation

 		
 tensornn.activation.Activation

 		
 tensornn.activation.ELU

 		
 tensornn.activation.LeakyReLU

 		
 tensornn.activation.NewtonsSerpentine

 		
 tensornn.activation.NoActivation

 		
 tensornn.activation.ReLU

 		
 tensornn.activation.Sigmoid

 		
 tensornn.activation.Softmax

 		
 tensornn.activation.Swish

 		
 tensornn.activation.Tanh

 		
 tensornn.errors

 		
 tensornn.errors.InitializationError

 		
 tensornn.errors.InputDimError

 		
 tensornn.errors.NotRegisteredError

 		
 tensornn.layers

 		
 tensornn.layers.flatten

 		
 tensornn.layers.Dense

 		
 tensornn.layers.Layer

 		
 tensornn.loss

 		
 tensornn.loss.BinaryCrossEntropy

 		
 tensornn.loss.CategoricalCrossEntropy

 		
 tensornn.loss.Loss

 		
 tensornn.loss.MAE

 		
 tensornn.loss.MSE

 		
 tensornn.loss.MSLE

 		
 tensornn.loss.Poisson

 		
 tensornn.loss.RMSE

 		
 tensornn.loss.RSS

 		
 tensornn.loss.SquaredHinge

 		
 tensornn.nn

 		
 tensornn.nn.NeuralNetwork

 		
 tensornn.optimizers

 		
 tensornn.optimizers.Optimizer

 		
 tensornn.optimizers.SGD

 		
 tensornn.tensor

 		
 tensornn.tensor.Tensor

 		
 tensornn.utils

 		
 tensornn.utils.normalize

 		
 tensornn.utils.one_hot

 		
 tensornn.utils.source

 		
 tensornn.utils.takes_one_hot

 		
 tensornn.utils.takes_single_value

_static/file.png

